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Abstract 

This paper uses the structural time series models to analyze U.S. Birth data (from 1946 to 2017) and U.S. 

Population data (from 1946 to 2018). Main focus is to study what kind of the stochastic structures that 

U.S. Birth and U.S. Population can be fitted. This paper uses the local level model, fixed trend model and 
local linear trend model. With the state space form of these three models, the Kalman filter is used to 

estimate unknown parameters, to predict one step ahead data and to do filtering data. Based on the AIC 

and validity check, the best fitted models for U.S. Birth and Population are recommended  
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1. Introduction 

Univariate or multivariate time series data can be modelled by the structural time series model. The structural time 

series model formulates a time series data directly in terms of the meaningful components such as trend, seasonal, 

cycle and irregular. It has an advantage to extract the unobserved meaningful components from observed data. 

Structural time series model has natural setting for the state space formulation that is required for the Kalman filter. 

This paper is to fit three structural time series models to yearly data of U.S. Birth counts (female, male and total 

counts) from 1946 to 2017 and of U.S. Population counts (female, male and total counts) from 1946 to 2018. 

Structural time series models that this paper entertained are a random walk model, a fixed trend model and a linear 

trend model. To estimate parameters of entertained model, to forecast future values and to extract unobserved 

components from observed data, the Kalman filter (Kalman 1960 & Harvey 1989) is applied with the corresponding 

state space form (Durbin & Koopman 2012) for each structural model. To compare models for each data, AIC 

(Akaike Information Criterion) is used.              

The plan of this paper is as follows. In section 2, the structural time series model is presented. It also shows 

how to set up the state space form for each structural model entertained. In Section 3, the Kalman filter is introduced. 

This section also shows what R package to use for the Kalman filter. In section 4, results of analyzing U.S. Birth data 

and U.S. Population data by female, male and total are presented. Finally, section 5 concludes the paper. 

 

2. Structural Time Series Model and State Space Form 
 

The structural time series model formulates a time series data directly in terms of meaningful components such as 

trend, seasonal, cycle and irregular. Since the model formulates data with meaningful components, outcomes of the 

entertained model are easily interpreted. In the structural time series model, each component has its own disturbance. 

The characteristics of each disturbance determine the characteristics of time series. Harvey and Todd (1983) 

compared the structural time series model with Box and Jenkins’ ARIMA model. Harvey and Peters (1990) showed 

the number of methods to compute the maximum likelihood estimator of unknown parameters of the structural time 

series model.  

 

The first structural time series model entertained in this paper is the local level (LL) model, namely,  

 

                                                  ,
        

          
                                                        (2.1) 

 

where    is the observed data,    is the unobserved trend component,    is the disturbance (or irregular) component 

that shows the stochastic behavior of the trend of time series, and    is the disturbance component which shows the  
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stochastic behavior of other than the trend. It is noted that (2.1) is the state space form itself. The state space form 

(2.1) has 1x1 state vector,   . 

 

Second model entertained is the linear trend (LT) model, namely, 
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                                               (2.2) 

 

where    is the observed data,    is the unobserved trend component,    is the unobserved slope component,    is the 

disturbance component that shows the stochastic behavior of the slope of the trend of time series, and    and    are 

defined as (2.1). The state space form of (2.2) is  
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The state space form (2.3) has 2x1 state vector, (
  

  
)  

A variation of the linear trend model is the fixed trend (FT) model, namely, 
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where    is the observed data,   is the deterministic slope of the trend,   ,   , and    are defined as before. The state 

space form of (2.4) is 
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The state space form (2.5) has 2x1 state vector, (
  

  
)  

 

3. Kalman Filter 

 
Introduced by Kalman (1960) and Kalman and Bucy (1961), the Kalman filter was employed in many areas by 

control engineers and physical scientists. Since time series models such as ARIMA models (Box and Jenkins, 1976), 

structural time series models (Harvey, 1989) and ARMAX models (Hannan and Deistler, 1988) can be built in the 

specification of the Kalman filter, statisticians in time series analysis widely used the Kalman filter for model 

specification, parameter estimations, diagnostics, forecasting, filtering and smoothing. The first published paper 

applied in time series area was Harrision and Stevens (1971) which applied in Bayesian forecasting. Since then, the 

Kalman filter has been used for analyzing time series data in many areas. For example, disease control (Gove and 

Houston, 1996), actuary claim reserves forecasting (Chukhrova and Johannssen, 2017), rain fall forecasting (Zulfi et 

al., 2018), and machine learning (Nobrega and Oliveira, 2019). 

The popularity of the Kalman filter is on the flexibility in model specification. The Kalman filter can be 

employed for both univariate and multivariate time series and for both time variant structure or time invariant 

structure of time series. Time series data,   , for t = 1, 2, …T denote the observed values of a time series of interest. 

   could be a univariate or multivariate. Also, let    denote the unobserved component vector, called the state vector. 

For the Kalman filter, it is assumed that the observed data,    and the unobserved component vector,    has the linear 

relationship as 

   =        ,    t = 1, 2, …, T    (3.1) 

 

in which    is N x 1 (N = 1 for the univariate and N >1 for the multivariate),    is N x m matrix,     is m x 1 vector, 

   is N x 1 vector of disturbances. In equation (3.1),    is assumed to be a known quantity which shows the 

relationship between    and   , and    is distributed by a multivariate normal with mean of N x 1 vector of zero and  

covariance of N x N matrix,   . Please note that the dimension of    and that of    are not necessarily same. Equation 

(3.1) is called the observation (or measurement) equation. For a univariate   , the observation equation can be written 

as 
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   =   
      ,            t = 1, 2, …, T   (3.2) 

 

in which    is a scalar,   
  is 1 x m vector,     is m x 1 vector,    is a scalar disturbance term whose distribution is a 

normal with mean of zero and a scalar variance   . 

The other equation required in Kalman filter is called the system (or transition) equation, which shows how 

the state variable,    is varied over time. The system equation is also linear as 

 

   =            ,       t = 1, 2, …, T  (3.3) 

 

where    is m x m matrix,    is m x g matrix,     is g x 1 vector of disturbances whose distribution is a multivariate 

normal with mean of g x 1 vector of zero and covariance of g x g matrix,   . It is noted that matrices,   ,   , and   , 

and covariance matrices,    and    may or may not change over time. If all matrices do not change over time, the 

model is called the time-invariant Kalman filter. 

Equation (3.1) and (3.3) together is called the state space form of Kalman filter for a multivariate time series 

data and (3.2) and (3.3) together is for a univariate time series data. The state space form of Kalman filter has three 

assumptions: 

 

Assumption 1) the initial state vector,    has a mean of    and Covariance matrix of    

Assumption 2) the disturbances    and    are independent each other. This assumption could be relaxed. 

Assumption 3) the disturbances    and    are independent with the initial state,   . 

 

With the state space form of (3.1) and (3.3), or (3.2) and (3.3) and the assumptions, the Kalman filter works as a 

recursive algorithm to provide the estimates of the state variable,    using time series data available,     
 (       ).  Given the information of initial state variable,   , the Kalman filter starts off the recursive algorithm. 

Using data at time t-1,      = (         ), the algorithm predicts the state variable,   . Then once data    is 

available at time t, the algorithm updates the state variable,    and predicts     . At time t+1, using data 

      updates      and predicts     . 

The recursive algorithm provides three estimates of the state variable,   . First, the filtered estimate is the 

estimate of    given      (       ). That is, the filtered estimate is the estimate of    based on the observations 

available at time t. Second, the forecast estimate is the estimate of    for t = T+1, T+2, … given   . That is, the 

forecast estimates are estimates of   ,          based on all observations available,   . The smoothed estimate is the 

estimate of    for t = 1, 2, …T given   . That is, the smoothed estimates are estimates of   ,   , …,    based on all 

observations available,   . These all three estimates are minimum mean square estimators (MMSE). 

The Kalman filter needs the information of initial state variable,    in order for the recursive algorithm to 

start off. The information required are mean and covariance matrix of   . If the state variable,    is stationary, then 

the mean and covariance matrix of    are given by the mean and covariance matrix of the unconditional distribution 

of   . If the state variable is non-stationary, then the distribution of    should be given as a diffuse prior, that is, 

putting the covariance matrix of    as kI where k is a very large scalar and I is an identity matrix. If the state variable 

   has both stationary and nonstationary elements, then the covariance matrix of    is given by 

  =*
   
  

+  where I is an identity matrix of d x d with d being the number of nonstationary elements in the state 

variable    and P is the covariance matrix of stationary elements in the state variable    (Harvey, 1989). 

In the state space form in (3.1) and (3.3) for a multivariate data or in (3.2) and (3.3) for a univariate data, 

there are some unknown parameters in matrices,   ,   ,    and   . Before running the recursive algorithm, these 

unknown parameters should be estimated. If the disturbances of    and    are normally distributed, the likelihood 

function of the observations could be obtained from the Kalman filter via the prediction error decomposition (Harvey 

and Peters, 1990). Unknown parameters are estimated by maximizing the likelihood function with respect to the 

unknown parameters.  

Another state space form of (3.1) and (3.3) is possible. The observation equation (3.1) is same but the system 

equation (3.3) has different form as 

 

     =        ,                 t = 1, 2, …, T   (3.4) 

 

Outcomes of using the state space form of (3.1) and (3.3), and the form of (3.1) and (3.4) in the Kalman filter are 

only different when the disturbances    and    are correlated at time t. The form of (3.1) and (3.4) specification is 

useful for setting up the ARMAX models. 
For analyzing our data by Kalman filter, we used a R function, fkf in a R package, FKF. Given the estimates 

of unknown parameters in matrices,   ,   ,    and   , the function fkf provides prediction, filtering and smoothing 

for univariate and multivariate time series based on the state space form of (3.1) and (3.4). To estimate unknown 

parameters in matrices,   ,   ,    and   , we used a R function, optim in a R package, stats. For the method for  
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optimization in optim, L-BFGS-B is used. L-BFGS-B is that of Byrd et. al. (1995) which allows box constraints, that 

is each variable can be given a lower and/or upper bound. The initial value must satisfy the constraints. The method 

uses a limited-memory modification of the BFGS, which is a quasi-Newton method.  

 

4. Analysis of data 

U.S. Birth data: In the United States, State laws require birth certificates to be completed for all births, and Federal 

law mandates national collection and publication of births and other vital statistics data. The National Vital Statistics 

(NVS) System is a joint work of National Center for Health Statistics (NCHS) and U.S. States. The NVS system 

provides statistical information of U.S. birth counts based on birth certificates. Standard form for the collection of the 

data and model procedures for the uniform registration of the events are developed and recommended for State use 

through joint activities of the U.S. States and NCHS. NVS report, for example, Martin et. al (2018) presents detailed 

data on numbers and characteristics of births for year 2017, birth and fertility rates, maternal demographic and health 

characteristics, medical and health care utilization, source of payment for the delivery, and infant health 

characteristics.  

In this paper, U.S. Birth data from 1946 to 2017 is used to analyze. We separated data by female, male and 

total. Figure 4-1 shows the time series plot of three data sets of birth from 1946 to 2017. 

 

 
Figure 4.1: U.S. Birth for Female, Male and Total 

 
Figure 4.2: U.S. Population for Female, Male and Total 
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U.S. Population data:  

 

The U.S. Census Bureau provides statistical information of U.S. people counts based on decennial censuses and 

several annual surveys such as the American Community Survey, the Current Population Survey, and the periodic 

Survey of Income and Program Participation. In this paper, U.S. Population data from 1946 to 2018 is used to 

analyze. We separated data by female, male and total as U.S. Birth data. Figure 4-2 shows the time series plot of 

three data sets of U.S. Population from 1946 to 2018. 

 

Stochastic models: 

  

Three structural time series models are fitted to both U.S. Birth and U.S. Population data: local level (LL) model, 

linear trend (LT) model and fixed trend (FT) model. State space form for LL model, LT model and FT model is 

given (2.1), (2.3) and (2.5), respectively. For all three models, it is assumed that errors terms are normally distributed 

with mean of zero and unknown variances. Thus, unknown parameters of LL model are variances of error terms of  

   and   , namely (varN, varE).  For LT model, unknown parameters are variances of error terms of   ,   , and   , 

namely (varN, varK, varE). For FT model, unknown parameters are variances of    and   , namely (varN, varE). For 

FT model, a simple regression of data on time is applied to get the estimate of fixed slope and the estimate is used for 

starting value for Kalman filter. 

For the distributions of components in the initial state,    for Kalman filter, diffuse priors are used since     

is a nonstationary in all three models. That is, initial values of means for components in    are zero vector and initial 

value of covariance matrix is kI where k is a large number and I is an identity matrix with a corresponding 

dimension, namely the dimension of LL model is 1 and the dimension of both LT model and FT model is 2.  

 

Outputs of U.S. Birth data: 

  

Table 4.1 shows the estimates of unknown variances, log likelihood and AIS (Akaike Information Criterion) for 

female, male and total data using three models.  

 

 VAR N VAR E LOGLIKE AIC 

FEMALE 2.77938 e+9 0.341 -892.4731 1788.946 

MALE 3.10869 e+9 0.012 -896.4731 1796.946 

TOTAL 1.12812 e+10 2.959 e-04 -942.9052 1889.810 

Table 4.1(a): LL model for U.S. Birth 

 
 VAR N VAR E LOGLIKE AIC 

FEMALE 2.76565 e+9 9.603 e-05 -892.295 1788.590 

MALE 3.10548 e+9 0.064 -896.436 1796.873 

TOTAL 1.12489 e+10 0.01 -942.804 1889.609 

Table 4.1(b): FT model for U.S. Birth 

 

 
 VAR N VAR K VAR E LOGLIKE AIC 

FEMALE 2.77952 e+9 3.9374 e-4 6.349 e-5 -880.538 1767.077 

MALE 3.10869 e+9 2.6535 e-2 1.371 e-4 -884.511 1775.033 

TOTAL 1.12812 e+10 1.0015 e-7 2.449 e-8 -930.269 1866.538 

Table 4.1(c): LT model for U.S. Birth 

 

Among three models, the LT model has the smallest AIC values for all three types of data, female, male and total. 

Thus, for U.S. Birth data, the LT model is the best fit among three structural models entertained in terms of AIC. 
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Figure 4.3: Normal plots of one step ahead prediction errors of U.S. Birth with LT model 

 

To check the validity of the LT model, one step ahead prediction errors are used. One step ahead prediction errors in 

Kalman filter play a role in checking validity of a model as residuals in general statistical models. That is, if a model 

is valid, one step ahead prediction errors are normally distributed. Figure 4.3 shows the normal plot of one step ahead 

prediction errors for three types of data with the LT model. The normal plots for all three data show that the one step 

ahead prediction errors are not away from the normal distribution.   

Also, Figure 4.4 shows Kalman filter outputs. It shows observed data, one step ahead prediction data, and 

filtered data. It is noted that since varE is a lot smaller than varN, the observed data and filtered data are almost 

overlapped. 

 
Figure 4.4: Plots of U.S. Birth data, one step ahead prediction data, and filtered data 

 

Outputs of U.S. Population data: Table 4.2 shows the estimates of unknown variances, log likelihood and AIS 

(Akaike Information Criterion) for female, male and total data using three models.  
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 VAR N VAR E LOGLIKE AIC 

FEMALE 1.79134 e+12 3.504  -1142.843 2289.686 

MALE 1.70093 e+12 1.601 e-05 -1140.939 2285.878 

TOTAL 6.95357 e+12 5.894  -1192.343 2388.686 

Table 4.2(a): LL model for U.S. Population 

 VAR N VAR E LOGLIKE AIC 

FEMALE 3.98684 e+10 0.307 -1005.858 2015.716 

MALE 7.44283 e+10 0.013 -1028.292 2060.584 

TOTAL 1.99915 e+11 0.451 -1064.574 2133.148 

Table 4.2(b): FT model for U.S. Population 

 VAR N VAR K VAR E LOGLIKE AIC 

FEMALE 5.90811 e+10 3.14163 e+10  9.454 e-05 -1028.015 2062.030 

MALE 1.05944 e+11 2.94657 e+10  0.012 -1042.171 2090.342 

TOTAL 3.18219 e+11 1.20076 e+11  8.769 e-07 -1084.746 2175.492 

Table 4.2(c): LT model for U.S. Population 

 

 
Figure 4.5: Normal plots of one step ahead prediction errors of U.S. Population with FT model 

 
Figure 4.6: Plots of original U.S. Population data, one step ahead prediction data, and filtered data 
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Table 4.2 shows that among three models, the FT model has the smallest AIC values for all three types of data, 

female, male and total. Thus, for U.S. Population data which shows a constant slope, the FT model is the best fit 

among three models entertained in terms of AIC. 

To check the model validity of the FT model, one step ahead prediction errors are used as Birth data. Figure 

4.5 shows the normal plot of one step ahead prediction errors for three types of data with the FT model. The normal 

plots for all three data show that the one step ahead prediction errors are not away from the normal distribution.   

Also, Figure 4.6 shows observed U.S. Population data, one step ahead prediction data, and filtered data. It is 

noted that since varE is a lot smaller than varN as birth data, the observed data and filtered data are almost 

overlapped. 

 

4. Conclusions 
 

This paper analyzes two data, U.S. Birth and U.S. Population data using three structural time series models with 

Kalman filter. A function, optim in stats package is used to estimate parameters and a function, fkf in FKF package is 

used to predict one stop ahead and to do filtering data. For U.S. Birth data which does not show any fixed trend 

pattern, the LT model is the best fit in terms of AIC and for U.S. Population data which shows a fixed trend, the FT 

model is the best fit in terms of AIC. 
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